Active Loop Antennas
Active loop antennas are used for a wide range of magnetic field testing. It is an efficient and low cost solution to satisfy any specific requirement. A loop antenna is a radio antenna consisting of a loop or coil of wire, tubing, or other electrical conductor with its ends connected to a balanced transmission line (or possibly a balun). There are two distinct antenna designs: the small loop (or magnetic loop) with a size much smaller than a wavelength, and the much larger resonant loop antenna with a circumference close to the intended wavelength of operation. Small loops have low radiation resistance and thus poor efficiency and are mainly used as receiving antennas at low frequencies. To increase the magnetic field in the loop and thus the efficiency, the coil of wire is often wound around a ferrite rod magnetic core; this is called a ferrite loop antenna. The ferrite loop is the antenna used in many AM broadcast receivers, with the exception of external loops used with AV Amplifier-Receivers and car radios; the antenna is often contained inside the radio's case. These antennas are also used for radio direction finding. In amateur radio, loop antennas are often used for low profile operating where larger antennas would be inconvenient, unsightly, or banned. Loop antennas are relatively easy to build. A small loop antenna, also known as a magnetic loop, generally has a circumference of less than one tenth of a wavelength, in which case there will be a relatively constant current distribution along the conductor. As the frequency or the size is increased, a standing wave starts to develop in the current, and the antenna starts to acquire some of the characteristics of a resonant loop (but isn't resonant); these intermediate cases thus cannot be analyzed using the concepts developed for the small and resonant loop antennas described below. Resonant loop antennas are relatively large, governed by the intended wavelength of operation. Thus they are typically used at higher frequencies, especially VHF and UHF, where their size is manageable. They can be viewed as a folded dipole deformed into a different shape, and have rather similar characteristics such as high radiation efficiency.